Set notation

A set is a collection of objects called elements.
If a is an element of the set S, we write $a \in S$,
and say that a belongs to s. If b does not belong to S, we write $b \notin S$.

Sets can be specified in two ways:
(a) Listing its elements

$$
A=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \quad \text { finite }
$$

(b) Stating the property that every element must satisfy:
$B=\left\{x: \frac{1<x<2}{2}\right\} \quad$ infinite sets

The symbol ϕ is used to denote the empty set.

$$
\begin{aligned}
& \left\{x: x^{2}+1=0\right\}=\varnothing \\
& x^{2}+1=0 \Rightarrow x^{2}=-1
\end{aligned}
$$

Let S and T be two sets. If every element of S also belongs to T, we say that S is a subset of T and write $S \subseteq T$.

Every $a \in S$ also $a \in T$

Two sets A and B are equal, denoted by $A=B$, if and only if $A \subseteq B$ and $B \subseteq A$.

$$
A=B \Rightarrow\left\{\begin{array}{l}
A \subseteq B \\
\text { and } \\
B \subseteq A
\end{array}\right.
$$

The set of real numbers \mathbb{R}.

Usually represented as a straight, solid line that extends indefinitely in both directions.

\qquad
Arithmetic

Subtraction and division are defined as

$$
a-b=a+\begin{gathered}
(-b) \\
\text { additive } \\
\text { inverse oft }
\end{gathered} \text { and } \frac{a}{b}=a b^{-1} \quad(b \neq 0)
$$

where $-b$ and b^{-1} are the additive and multiplicative inverse of b_{1} respectively.

Division by 0 is not defined. The expression $\frac{2}{0}$ makes no sense.
∞ is not a real number and it is not true that $\frac{2}{0}=\infty$.

Theorem
The additive and multiplicative identities are unique.
Proof: Suppose there is some $u \in \mathbb{R}$ such that $a+u=a$ for all $a \in \mathbb{R}$ We will prove that $u=0$.

$$
\begin{gathered}
a+u=a \quad \forall a \in \mathbb{R} \\
a=0 \quad u=0+u=0
\end{gathered}
$$

Suppose that there is some $v \in \mathbb{R}$ such that $v a=a^{*} \quad \forall a \in \mathbb{R}$
If I fix $a=1$

$$
v=v-1=1^{*} \Rightarrow v=1
$$

$$
\uparrow
$$

because 1 is an identity

Theorem
Let a be any real number. Then a has a unique additive inverse. If $a \neq 0$, it has a unique multiplicative inverse.
Proof: Fix $a \in \mathbb{R} .(-a) \quad a+(-a)=0$
Suppose that u is also an additive inverse of a. We will prove that $u=-a$

$$
\begin{aligned}
u=u+0 & =u+[a+(-a)]^{\downarrow}=(u+a)+(-a) \\
(u+a=0) & =0+(-a)=-a \Rightarrow u=-a
\end{aligned}
$$

Suppose that v is also a cult. inverse of a. (a^{-1} and $a \cdot a^{-1}=1$)

$$
v=1 v=\frac{\left(a^{-1} \cdot a\right) v}{}=v^{\text {Associativity }}=a^{-1}(a v) \underset{\uparrow=a^{-1}}{\neq a^{-1} \cdot 1=a^{-1}}
$$

Theorem
For any $x \in \mathbb{R}$, if $a+x=b+x$, then $a=b$.
Proof: (hyp)

$$
\begin{aligned}
a & =a+0 \\
& =a+(x-x) \\
& =(a+x)-x \\
(\text { hyp. }) & =(b+x)-x \\
& =b+(x-x) \\
& =b+0 \\
& =b
\end{aligned}
$$

Theorem

1. For any non-zero $x \in \mathbb{R}$, if $a x=b x$, then $a=b$.
2. $0 x=0$ for all $x \in \mathbb{R}$
3. $1 \neq 0$.
4. $(-1) x=-x$ for all $x \in \mathbb{R}$.
5. $-(-x)=x$ for all $x \in \mathbb{R}$.
6. If $x y=0$, then either $x=0$ or $y=0$.
7. For all $x, y \in \mathbb{R}, x(-y)=-(x y)$.
8. For all $x, y \in \mathbb{R},(-x)(-y)=x y$.
9. If $x \neq 0$, then $x^{-1} \neq 0$ and $\left(x^{-1}\right)^{-1}=x$.
10. If $x \neq 0$ and $y \neq 0$, then $x y \neq 0$ and $(x y)^{-1}=x^{-1} y^{-1}$.
11. For any non-zero $x \in \mathbb{R},(-x)^{-1}=-x^{-1}$
